Material	ρ,g/cm ³	v _p ,km/s	v _s ,km∕s	z _p	Z _s	Reference
α-quartz	2.65	5.75 ^a	3.92 ^b	15.2	10.3	McSkimin et al. [1965
MgF ₂ [100]	3.18	6.70	4.22	21.3	13.4	Davies [in preparation
Fused quartz	2.20	5.9	3.8	13.0	8.4	Peselnick et al. [1967
Spinel [100]	3.58	8.87	6.57	31.8	23.5	Chang and Barsch [1973
276-V9 resin (20°C) (Dow-Corning)	-	-	-	2.2	1.0	McSkimin and Andreatch [1962

TABLE 2. Densities, Velocities, and Acoustic Impedances of Various Materials

.

.

.

.

a. For [100] (X-cut).

b. For [010] (Y-cut).

541

.

.

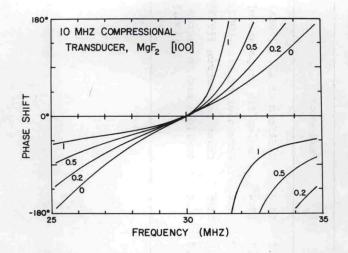


Fig. 4. Calculated transducer-bond phase shifts for compressional [100] waves in MgF₂ with a 10-Mhz quartz transducer bonded to the sample with V9 resin. Curves are labelled with bond transit time τ_{f} (nsec). Note that +180° is equivalent to -180° so that the curves in the lower right are continuations of the curves intersecting the upper margin.

$$\tan \psi_t = \frac{Z_t}{Z_c} \tan \theta_t.$$

(9)

For non-zero bond thickness, the calculated phase shift is not symmetrical. At multiples of the transducer resonance frequency, the effect of the bond is very small, as pointed out by *McSkimin* [1961], but the bond effect can increase quite rapidly away from resonance multiples, especially on the high-frequency side (Figure 4).

Figure 5 compares some measured and calculated phase shifts as functions of carrier frequency. A reference measurement was made using a fused quartz buffer rod bonded to the sample. As described in the next section, the slope of this phase line should be very little affected by the buffer-sample bond. Accordingly, Figure 5 also shows the measured phase residual, with transducer bonded to sample, relative to a line with a slope measured with the buffer rod and coinciding with the measurement of 30 Mhz. The measured residual is compared with calculated transducer-bond phase shifts with $\tau_f = 0$, 0.1, and 0.2 nsec. The form of the measured residual agrees well with that of the calculated phase shifts, and a value of τ_f between 0.1 and 0.2 nsec can be inferred from Figure 5. This corresponds to a bond thickness of the order of 0.2 to 0.4 μ , which is perhaps thinner than might have been

542